Viral hepatitis prevention board meeting

Prevention and control of viral hepatitis in the Russian Federation: lessons learnt and the way forward. Moscow, 25-26 October 2018

Achievements and new prospects of the hepatitis B massive preventive vaccination programme in the Russian Federation

Komarova S.V.

Federal Budget Institute of Science "Central Research Institute of Epidemiology" of Rospotrebnadzor Reference-center for surveillance of viral hepatitis of Rospotrebnadzor

Improvement in the monitoring of viral hepatitis B in the Russian Federation

 Reduction in the morbidity rate of acute viral hepatitis B and in the detection frequency of chronic viral hepatitis B

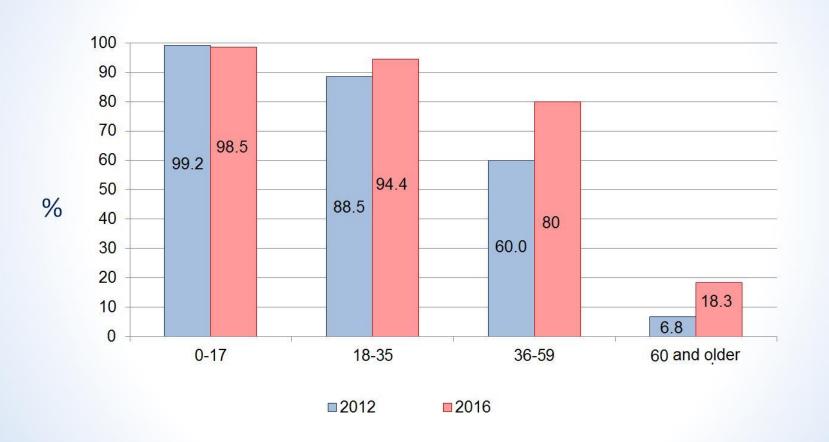
In the Russian Federation in 2017:

- in 9 subjects (10,6%) of the RF there were registered no cases of acute viral hepatitis B disease (in 2016 in 11 subjects, in 2015 in 12 subjects)
- among children up to 17 years old there were registered 12 cases of acute viral hepatitis B (in 2015 and 2016 each, there were registered 22 cases of acute viral hepatitis B)

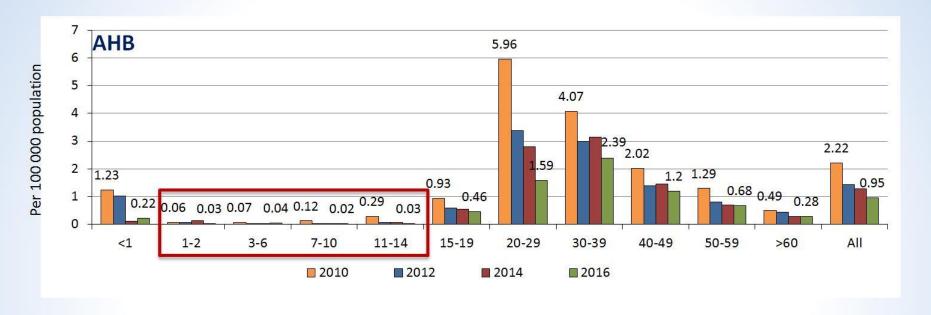
Progress in HBV Control in Russia

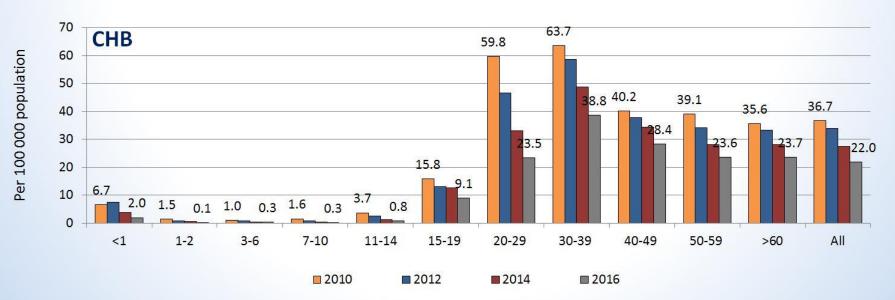
 Wide coverage of infants by triple vaccine doses, i.e. over 95% since 2004

Coverage of 1 year-olds by triple HBV vaccine doses in RF in 1999-2017 гг.



HBV immunized (accrual) and acute (OFB) and chronic (XFB) HBV cases, registered in 2000-2017




- In 2015-2017, Russia immunized against HBV annually over 3 000 000, including over 1 500 000 children.
- Total immunized since campaign start is about 100 MM.

RF population coverage of triple vaccine doses against hepatitis B in 2012 and 2016

Incidence of acute and chronic Hepatitis B in different age groups, Russia, 2010-2016

Hepatitis B Vaccination Program in Russia

1996

- vaccination of newborns and children at high risk of infection (born to HBsAg-positive mothers, household contacts, children in orphanage, frequently transfused, hemodialysis);
- vaccination of adults from high risk groups (health care workers, medical students, frequently transfused and hemodialysis patients, household contacts, PWID);

1997

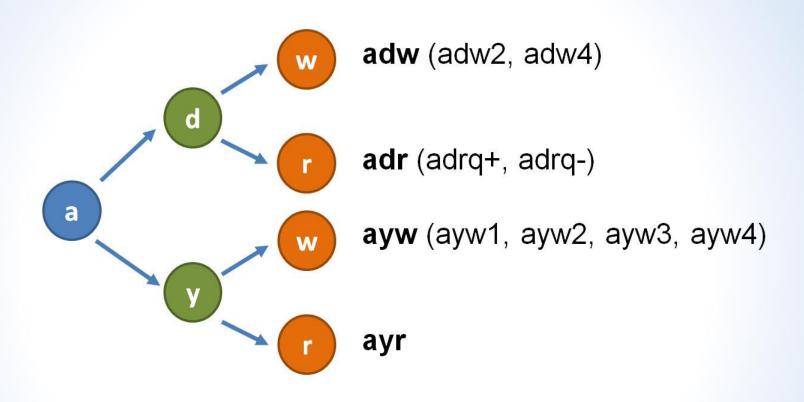
universal vaccination of newborns;

2001

universal vaccination of all children 13 years of age;

2006

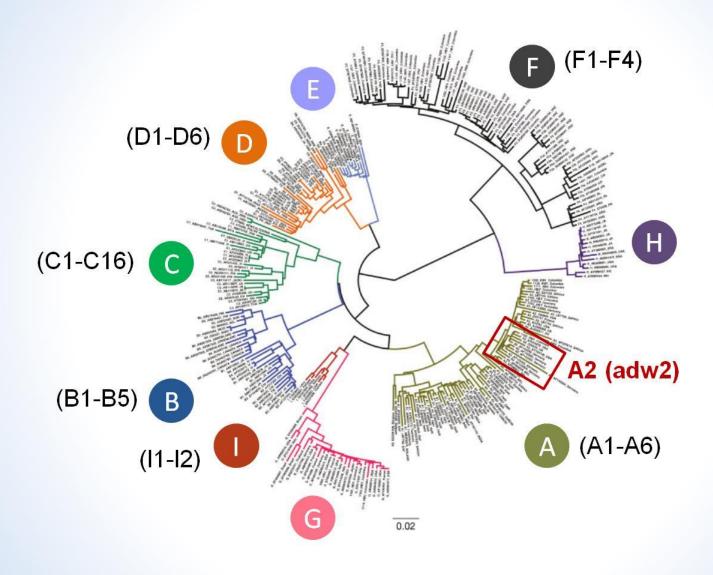
 catch-up vaccination of children from 1 to 17 years of age and adults from 18 to 35 years of age;


2007

catch-up vaccination of adults from 18 to 55 years of age.

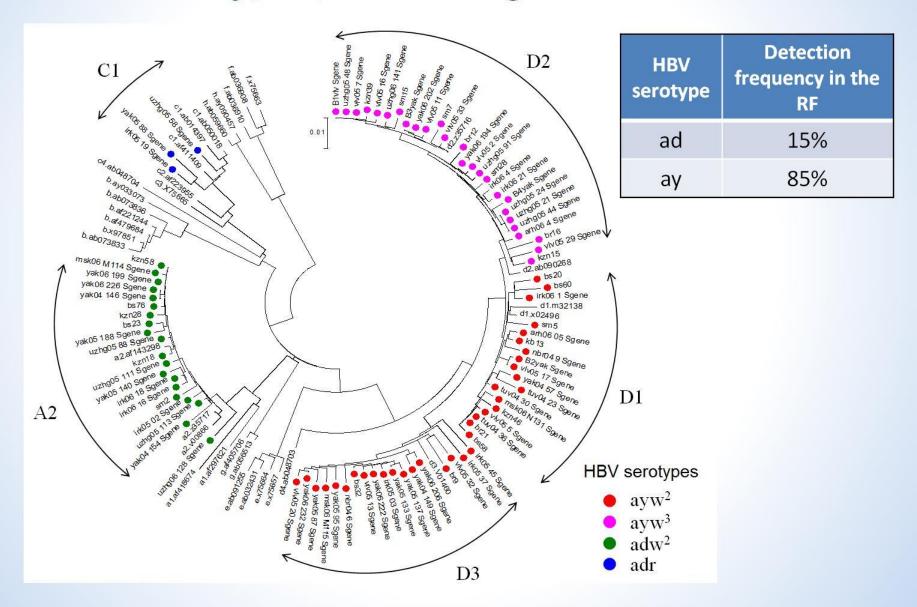
HBV monovaccines used in RF, included in the Public Formulary

Medication/ vaccine	Producer	
HBV, recombinant, yeast	Kombiotech, Russia	
Regevac B	Binnopharm, Russia	
HBV, recombinant	Microgen, Russia	
Biovac B	Vokhard Ltd., India	
HBV, recombinant (rDNA)	Serum Institute of India Ltd.	
Shanvac B	Shanta Biotechnix Ltd., India	
Eberbiovac	Ebere Biotech C.A., Cuba	
Endgerics B	GSK Biologicals, Belgium	
Euvax B	El G Джи Life Sciences Ltd., South Corea	


HBV sero- sub-types

"a" HBsAg determinant is present in all serotypes and located within 124-147 amino acid positions of the main solvent-exposed region.

122 and 160 amino acids determine affiliation to d/y and w/r subtypes respectively.


Hepatitis B virus genotypes

Worldwide distribution of HBV Genosubtypes

Prevalence rate of HVB subgenotypes and serotypes, circulating in the RF

Is the current prophylactic hepatitis B vaccination satisfactory?

International decision makers:

Yes, > 90 % protection rate

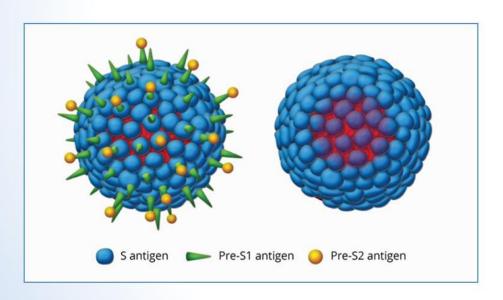
Problems: Nonresponders, mother to child transmission

But: Asymptomatic break-throughs are frequent

Evidence of protection against clinical and chronic hepatitis B infection 20 years after infant vaccination in a high endemicity region. (Thailand)

Poovorawan et al. (2011) J Viral Hepat 18:369-375

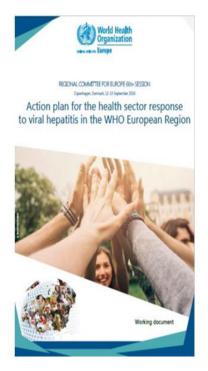
During the 20-year follow-up, no subject acquired new chronic HBV infection or clinical hepatitis B disease." (N=222)


12.8 % asymptomatic HBV infections in the 2nd decade As many as in the unvaccinated control group

HBV monovaccines used in RF, included in the Public Formulary

Medication/ vaccine	Producer	Antigenic composition as per instruction
HBV, recombinant, yeast	Kombiotech, Russia	ay and/or ad
Regevac B	Binnopharm, Russia	ayw
HBV, recombinant	Microgen, Russia	
Biovac B	Vokhard Ltd., India	
HBV, recombinant (rDNA)	Serum Institute of India Ltd.	
Shanvac B	Shanta Biotechnix Ltd., India	ad
Eberbiovac	Ebere Biotech C.A., Cuba	
Endgerics B	GSK Biologicals, Belgium	
Euvax B	EI G Джи Life Sciences Ltd., South Corea	

G3 HBV vaccines



- G1 vaccines were blood plasma received from donor plasma, taken from patients with chronic viral liver lesion and were of a danger to health. So there use was stopped.
- G2 recombinant vaccines use HBV envelope S protein, synthesized in yeast fungi cells.
- 3. G3 vaccines contain one (Pre-S2) or two (Pre-S1 и Pre-S2) extra envelope proteins and were developed in mammals' transfectant cells.

Hepatitis B control in the WHO European region

Objective 3: Hepatitis B control through immunization

Target indicators for hepatitis B control:

- Children coverage with triple doses of vaccines against hepatitis B – 95%
- Coverage of interventions, focused on prevention of intergenerational transmission of hepatitis B from mother to child – 90%
- Prevalence of HBsAg ≤0,5% in vaccinated cohorts

More data required to confirm regional goals achieved

- The reports do not inform about newborns' coverage by 1st HBV vaccine dose (not later than 24 h on delivery).
 - This value is important to evaluate timely newborns' coverage, and decision is required to change or improve the reporting.
- Data is required on chronic HBV prevalence among the immunized.
 - The more than a decade-old studies were not representative due to inadequate n tested, or "comfortable" sampling used.

Objectives of the survey

Primary objective:

 To estimate the seroprevalence of hepatitis B surface antigen (HBsAg) in school children attending 5th grade in the Russian Federation on the national and federal district level.

Secondary objectives:

- To estimate the distribution of different marker combinations (anti-HBs, anti-HBc, HBsAg)
- To describe vaccination coverage based on patient files

Sampled population:

 Children attending 5th school grade in the Russian Federation

Sample Size

Estimates:

- 1 national estimate
- 8 federal districts estimates

	Expected prevalence	Upper precision bound	Sample size
Per federal district	0.30%	0.94%	1,474
Total (8 federal districts)	0.30%	0.50%	11,788

Following values were used for the sample size calculations:

 $\alpha = 0.05$

Power = 80%

Design effect = 1.7

Summary

1. The fairly wide coverage by HBV immunization:

- infants (under 1 year of age): over 95%.,
- children from 0 to 17 years old over 95%,
- adults approximately 70%

to lower acute HBV incidence below 1,0/ 100 000

2. It is required:

- Ensure federal registration and record-keeping of 1st injection to newborns during first 24 h after birth.
- Improve HBV vaccines.
- Develop and use G2 vaccines, containing RF-relevance ay and ad antigen determinants, which is preferred versus HBsAg ay vaccine.
- Develop and implement in health care the G3 HBV, containing max. set of antigen determinants being are relevant to circulating virus genotypes.
- Improve HBV immunization programme effectiveness evaluation.
- Conduct serosurveys to determine HBsAg prevalence among the immunized in RF.

Thank you for your attention!